
1

Using
Automatic Code Generation

In the
Attitude Control Flight Software

Engineering Process

Primary Author: David McComas
NASA Goddard Space Flight Center, Code 582
Greenbelt, MD 20771
301-286-9038
david.mccomas@gsfc.nasa.gov

Co-Authors: James R. O’Donnell, Jr., PhD
Stephen F. Andrews

Abstract

This paper presents an overview of the attitude control subsystem flight software
development process, identifies how the process has changed due to automatic code
generation, analyzes each software development phase in detail, and concludes with a
summary of our lessons learned.

Attitude Control Subsystem (ACS) Flight Software (FSW) and the processes that govern
its development are complex. The Microwave Anisotropy Probe (MAP) spacecraft’s ACS
FSW, currently being developed at the NASA’s Goddard Space Flight Center (GSFC), is
being partially implemented using Integrated Systems Inc.’s (ISI) MATRIXx which
includes an automatic code generation tool AutoCodeTM.  This paper examines the
“traditional” ACS FSW development process and describes how the MAP effort,
augmented with ISI’s tool set, has addressed ACS FSW development complexities.

The MAP ACS team carefully scoped the use of the MATRIXx tools from the outset of
the project.  The analysts confirmed that MATRIXx was suitable for analysis and
algorithm development, but was not certain that AutoCode would be used.  Initially,
AutoCode’s role was to automatically generate an algorithms specification, which has
traditionally been a laborious process.  If the generated code could be verified, and it
passed size and performance requirements, then it would be considered for use as flight
code.  This low risk approach allowed the team to investigate new technology while
addressing the demands of MAP’s ambitious schedule with a small development team.



2

The paper is structured into two sections.  The first section provides contextual
information for the second section.  The first section describes the MAP mission and the
flight architecture on which the ACS FSW resides, and the MATRIXx tools.  Section two
presents an overview of the ACS FSW development process, identifies how the process
has changed due to AutoCode, analyzes each software development phase in detail, and
concludes with a summary of our lessons learned.

MAP Mission and Flight Architecture Overview

MAP’s mission is to probe conditions in the early universe by measuring the properties of
the cosmic microwave background radiation over the full sky.  These measurements will
help determine the values of cosmological parameters associated with the “Big Bang” and
determine how and when galactic structures formed.  MAP will maintain a halo orbit
about the Sun-Earth Lagrange point (L2), 1.5 million kilometers from the Earth (away
from the sun).  MAP will maintain a 0.464 rpm spin rate about the spacecraft’s Z axis
during science observations.

The ACS FSW plays a central role in every phase of the MAP mission using, sensors and
actuators to perform attitude determination and control and fault detection and correction.
Following launch, the ACS must reduce spacecraft body rates and orient the spacecraft to
a power-positive and thermally-safe attitude.  The ACS must provide three-axis inertial
pointing and provide the capability to slew the spacecraft to new attitudes.  The ACS
must be capable of doing orbit maneuvers using thrusters.  These maneuvers will be used
to get to L2 and to perform L2 station keeping.  The ACS also controls the 0.464 rpm
science observation spin.

Figure 1 shows where the ACS FSW fits into the MAP flight architecture.  The portion of
ACS FSW relevant to this paper resides on the Mongoose processor in the ACS task.
The Mongoose uses the software bus for inter-task communication. The software bus is a
GSFC custom-built library that provides standardized packet-based inter-task
communication and insulates applications from the real-time operating system.  A task
defines a packet pipe on which to receive data.  Task execution is usually controlled by a
task pending for data with an optional timeout.  The ACS task pends for an Attitude
Control Electronics (ACE) sensor data packet, which is generated at a 1Hz rate.  After the
ACS task receives the packet it converts the sensor data to engineering units in the body
frame, updates its attitude knowledge, executes a control law, and issues an actuator
command.  Each second the ground command packet pipe is polled for new commands,
and telemetry packets are generated for onboard storage and/or downlink.  Note that the
ACS task is isolated from hardware interface details and uses the software bus for all
external communications.



3

IRU

Attitude
Control

Electronics

DSS
CSS

PCS
RWA

Autonomous
Star

Tracker

Mongoose Processor

1773 Bus

Software Bus

ACS
Task

Other
Tasks

Data
Packets

Figure 1 – MAP flight architecture

Two additional ACS features need to be described in order to understand the analysis and
design of the automatically generated code and the code that interfaces with it.  These two
features are the sensors and actuators and the ACS operational modes.  MAP uses the
following sensors and actuators for attitude determination and control:

Inertial Reference Units (IRU)
Measure changes in MAP’s angular
position.  Spacecraft body rates are derived
from the incremental angular
measurements.

Digital Sun Sensor (DSS)
Provides accurate measurements (< 0.01o)
of the sun’s position within a 64 degree
square field of view.

Coarse Sun Sensors (CSS)
Provide coarse measurements (< 10o) of the
sun’s position. The CSSs are mounted to
provide complete sky coverage.

Autonomous Star Tracker (AST) Provides an estimated attitude derived from
star measurements.

Propulsion Control System (PCS) Provides external force and torque to the
spacecraft via hydrazine-fueled thrusters.

Reaction Wheel Assembly (RWA) Provides spacecraft attitude control via
three reaction wheels.

MAP uses five operational modes to achieve its mission goals.  Modes are defined in
terms of operational objectives, spacecraft control objectives, and performance criteria.
Each mode specifies a set of sensors and actuators and a control subsystem configuration.



4

MAP defines the following modes:

Operational Mode Description

Sun Acquisition (SA)
Uses IRUs, CSSs, and the RWA to acquire
a sun-pointing, power and thermally-safe
attitude within 20 minutes from any initial
attitude.

Inertial (IN)
Uses IRUs, DSS, ST, and the RWA to
acquire and hold a fixed commanded
attitude.

Observing (OB)
Uses IRUs, DSS, ST, and the RWA to
perform a scanning pattern. Observing is
the only mode used for collecting science
data.

Delta-V (DV)
Uses IRUs and the PCS to perform
spacecraft maneuvers.  Delta-V is used for
trajectory management to get to the Sun-
Earth L2 point approximately 1.5 million
km from the Earth (away from the sun) and
for L2 station-keeping.

Delta-H (DH) Uses IRUs and the PCS to perform
momentum unloading.

MATRIXx Overview

The purpose of this paper is not to evaluate MATRIXx.  However, it is necessary to
understand some of the components and features of MATRIXx in order to understand
how they impacted the software development.  Figure 2 shows the MATRIXx runtime
environment. SystemBuild provides a graphical environment for building models and a
graphics package for analyzing data.  Xmath provides text-based windows for user
interaction and the mathematical computation engine. The three standard user windows
are status log, command input, and error message.

Block Diagrams
Simulations

System Build

Mathematical Engine
Signal analysis
Controls analysis
Plots

Xmath

Math Scripts
Data Files

Saved Models

Figure 2 – MATRIXx Environment



5

An engineer graphically decomposes complex models in SystemBuild using SuperBlocks.
SuperBlocks are characterized by their inputs, outputs, and user defined attributes.
Timing attributes include continuous, discrete, procedure, and triggered.  Procedure
blocks can be further classified as standard, inline, macro, interrupt, background, or
startup.  Attribute details will be described as needed in the paper.

SuperBlocks may contain other SuperBlocks and/or functional blocks. Hierarchies of
SuperBlocks are used to abstract system details.  Functional blocks cannot be further
decomposed.  The most common functional blocks used on MAP include trigonometric
functions, algebraic functions, logical functions, and dynamic systems functional blocks.
Most functional blocks are “closed” which means an engineer can define the block’s I/O
and configuration parameters, but cannot change the block’s functionality.  For MAP, we
used three types of  “open” blocks, which allow the user to extend the system’s
functionality. Algebraic blocks allow the user to define the block’s outputs as algebraic
functions of the block’s inputs (and other parameters). BlockScript blocks allow the user
to use BlockScript, a FORTRAN-like procedural language, that allows many
programming constructs.  Finally, User Code Blocks (UCB) allow user supplied C code
to be linked with SystemBuild.

In addition to providing functional organization, SuperBlocks also control some aspects
of the data flow.  There are three basic methods for transferring data with a SuperBlock.
SuperBlock I/O pins can be used to pass data up and down a SuperBlock hierarchy.
Read-from and write-to variable blocks can input and output data from a global
workspace.  The last method, available for most SuperBlocks, is to define SuperBlock
parameters.  Parameters are variables that are imported from the Xmath variable space
and are called percent variables (%VARs).  %VARs are used to define variables, such as
alignment matrices and controller gains, that do not change during a simulation.
AutoCode converts %VARs to global variables that can be written to and read by code
external to the automatically generated code.  %VARs can be logically grouped into
partitions and a SuperBlock can specify a particular partition for its %VARs.

The automatic code generation process is shown in Figure 3.  A model must be loaded
into SystemBuild and default values for %VARs should be established.  This is best
achieved by using a MathScript (Xmath command files) to define the defaults. The top
most SuperBlock is supplied to AutoCode and code is generated for this SuperBlock and
every subordinate SuperBlock.  Code can be generated for multi-rate systems using the
scheduled-subsystem option, and for single rate systems using the procedures-only
option.



6

AutoCode
Process

model.h
model.c

modeltb.c

HiFi
Model

Math
Scripts

map.tpl

model_sim.c

sb.h
sb.c

Figure 3 – Automatic code generation process

The code generation process is controlled by a script written in ISI’s Template
Programming Language (TPL).  We extended ISI’s default TPL file (renamed to map.tpl)
to include the following features:

•  Non-FSW is output to a separate model_sim.c source file.  This includes code
such as UCB wrappers (code used to interface C language functions into a
simulation via a User Code Block) that could be used in a simulation environment
but are not needed in the flight environment.

•  Separate header and source files are created for each non-inline SuperBlock.  This
enhances readability, encapsulation, maintenance, and configuration management.
Late changes will result in individual files being delivered.

•  Two interface functions model_Init() and model_Dispatch() are created to provide
a consistent interface to the automatically generated code.  These functions also
provide a placeholder for customizations.

The MATRIXx AutoCode process is essentially closed, which means the code generated
for a functional block cannot be altered.  This is why the BlockScript and Algebraic
blocks are considered to be open since they allow user customization of the generated
code.  As an example of the closed nature of the code generation process, let us consider
how the %VARs are defined.  To define the %VARs the TPL script calls a predefined
TPL function named define_percentvars().  This generates the code for all of the %VAR
definitions.  The TPL script can add code around the %VAR definitions and it can control
what file the definitions appear in, but that is all it can do.

ACS FSW Development Process

Figure 4 illustrates the MAP ACS FSW development process.  The solid lines represent
the traditional process and the dashed lines indicate where the process has significantly
changed for MAP.  Many traditional parts of the process were impacted as well, and these



7

impacts will be described in their respective sections. Note there is an iterative aspect to
our development process that is not shown in the figure.  The FSW is delivered to the
build test team in incremental builds and the requirements and design are continually
refined throughout the process.

High Fidelity Simulation
(HiFi)

High Fidelity Simulation
(HiFi)

MATRIXx
DocumentIt

MATRIXx
AutoCode

Algorithms

FSW Unit

Manual Code

ACS FSW
Requirements
Specification

Requirement Analysis

FSW Load Image
FSW Load Image

Unit Verification
Method #1

Unit Verification
Method #3

FSW Design HiFi Design

FSW Unit

Unit Verification
Method #2

Build Test
Build

Validation
Performance
Verification

Figure 4 - ACS FSW Development Process

The process begins with ACS FSW requirements analysis. This is a system engineering
process primarily involving Guidance Navigation and Control (GNCC) analysts, FSW
specialists, and spacecraft engineers.  This activity produces an ACS FSW Requirements
Specification and feeds directly into both the FSW and high-fidelity (HiFi) simulator
designs.  HiFi is required for the GNCC analysts to validate the spacecraft controls
algorithms which are needed in the ACS FSW.  On previous GSFC missions, the ACS
FSW architecture and the HiFi software architectures were developed independently, with
minimal-to-none commonality between the two software systems.



8

The use of AutoCode requires that the FSW and HiFi architectures account for one
another’s environment.  The graphical HiFi environment encapsulates function and data
into a component called a SuperBlock.  In order for a translated SuperBlock to exist in the
FSW environment, HiFi must emulate the FSW environment or the SuperBlock must
avoid interfacing or relying on features of the FSW environment.  Any differences that
exist between the two environments must be accounted for by the automatic code
generation process or by manually changing code after it has been generated.  The
analysis and design section describes the translation strategies that were taken on MAP.

The implementation phase gets its inputs from the ACS requirement specification and the
ACS algorithm specification.  The ACS requirements specification defines what the FSW
needs to accomplish in terms of functional and performance statements.  The algorithms
specification is a companion to the requirements and it defines the mathematical details
needed to be implemented by the FSW in order to meet the functional and performance
criteria.  Traditionally all of the FSW has been manually coded from these inputs. Two
significant changes were made on MAP.  First, the generation of the ACS algorithms
specification was automated using ISI’s DocumentItTM.  In the past, the generation and
maintenance of the ACS algorithm specification was a tedious job that has required a
dedicated analyst.  Second, the automatic generation of some of the flight code eliminated
part of the manual coding effort.  These two changes were not free and the price of using
the tools will be discussed in the implementation section.

Testing occurs at both the unit and build test levels. At the unit level, 3 verification
processes have been enumerated.  Unit verification method #1 requires the developer to
verify that the requirements and algorithms have been implemented correctly.  Depending
upon the scope of the algorithms being coded, unit test data from HiFi may or may not be
supplied.  Unit verification method #2 is new and is used to verify the automatic code.
Since the HiFi and FSW have a common interface to the automatic code it was relatively
easy to capture HiFi data at the common interface and feed it through the automatic code.
Even without AutoCode, this method could have been employed in the past if the FSW
and HiFi designs used a common architecture.  Unit verification method #3 was an
unanticipated benefit of using the tool set.  We were able to take the entire FSW attitude
determination subsystem flight code and run it in the HiFi.

At the build test level, the changes were mostly due to other features of the tool set
beyond AutoCode.  The main advantage of the tool set is that the analysts used the HiFi
data analysis platform for test data comparison between data from the development lab
and data from the HiFi.  In the past, the build test data analysis platform was not
necessarily the same as the HiFi’s platform.  Having the data analysis platform integrated
with the HiFi platform also enabled the script files developed during analysis to be used
for build test verification.

Analysis and Design



9

The analysts and programmers had to coordinate their efforts during the analysis phase
because automatic code generation requires a tight coupling between the HiFi design and
the ACS FSW design.  First, both groups needed to understand the capabilities of the
tools in order to understand how to best utilize them.  Concurrently, a preliminary
architecture that would be common to both the HiFi and the FSW needed to be defined.
The definition of this architecture was based on MAP requirements analysis and on
previous mission architectures.  The common architecture identified major components
such as sensors, actuators, control modes, attitude determination, and ephemeris and the
data that flows between the components. With detailed knowledge of the tools and a
preliminary architecture, the MAP team was prepared to define the scope of the
automatically generated code. Business forces as well as technical forces shaped the
boundary of the automatically generated code.

The primary business issues are that we meet the schedule while delivering a high quality,
testable product that implements the requirements.  MAP is Goddard’s first mission to
use an automatic code generator for its FSW, and prior to MAP, Goddard had no
experience with ISI’s code generator.  Our strategy towards mitigating risks was to
minimize the impact of the FSW environment upon the HiFi and to limit the scope of the
automatically generated code to a portion of the ACS FSW that has a high algorithm-to-
code ratio. This strategy minimizes the impact to the analysts while taking advantage of
the biggest benefit of AutoCode, which is to eliminate the error prone process of
manually translating algorithms to flight code.

Technically, automatic code generation is the translation of a design from the HiFi
environment to the FSW environment.  The HiFi environment must model any aspects of
the FSW environment if the generated code is to be linked with the flight code without
any manual changes to the automatic code.  As described in the MAP flight architecture
overview, MAP is using the software bus as the inter-task communication medium.
Opting not to model the software bus in HiFi, we immediately limited the scope of each
AutoCode invocation to an intra-task scope and ISI’s real-time operating system,
pSOSystem, was not even considered.  There are also unique flight software interfaces for
processing ground commands, generating asynchronous event messages, and notifying
the Fault Detection and Correction (FDC) subsystem.  Again, we opted not to model
these interfaces in the HiFi, further restricting the AutoCode scope.

With these guidelines in hand, we were prepared to identify the portion of the ACS FSW
that is automatically generated.  Figure 5 shows a simplified high-level block diagram of
MAP’s flight control software.   This software is suitable for a single task because all of
its components execute at 1Hz and have fairly strong data cohesion.  Sensors measure
spacecraft position and rates. Attitude determination uses sensor measurements to update
the onboard estimated attitude, which is supplied to the controller subsystem.  The
desired spacecraft attitude is either supplied by mode management or internally computed
by command generation.  Attitude error computes control errors for the control law based
on a combination of sensor measurements, estimated attitude, and commanded attitude.
The control law computes control torques which are output to the actuators.



10

Attitude
Determination

Attitude
Error

Control
Law

Actuator
Output

Sensor
Input

Sensor
Hardware

Actuator
Hardware

Controller Subsystem

Command
Generation

Mode
Management

Pos & Rates

Estimated
Attitude

Commanded
Attitude

Figure 5 – ACS FSW block diagram

The shaded controller subsystem identifies the portion of the MAP ACS FSW that is
being automatically generated.   This final design takes advantage of the controller
subsystem’s relatively small and simple set of inputs and outputs.  The controller
subsystem’s local rotating-sun-reference coordinate frame is encapsulated entirely within
the AutoCoded portion of the FSW.  Since the controller subsystem components execute
at the same rate, we can use the “procedures-only” AutoCode option, which greatly
simplifies the automatic code.  Attitude determination shares many of the same attributes
as the controller subsystem with respect to being suitable for AutoCode, but it was not
chosen to be automatically generated since MAP could adapt an existing attitude
determination subsystem from a previous mission.

Implementation

Once the scope of the automatically generated code was defined, we turned our attention
to the code that is generated and to the manual code that interfaces with the automatic
code.  Figure 6 is a class diagram showing the classes involved with the manual-to-
automatic code interface.  AutoCode creates a collection of C functions that can be
conceptualized as a single object.  This object, named achifi, corresponds to the parent
SuperBlock supplied as an input to AutoCode.  Achifi provides two interface functions
achifi_Initialize() and achifi_Execute().  Outputs from achifi are exported via a global
data structure named achifi_Output.  The manual code treats this as a read-only data
structure; although no mechanisms enforce this rule.



11

Controller

Controller_New()
Controller_Delete()
Controller_Execute()
Controller_Init()
Controller_MonitorPerformance()

achifi_Input

achifi

achifi_Init()
achifi_Execute()

achifi_Output
Only base class
calls achifi functions

TableManager

Load and dump
%VARs

RWA Controller PCS Controller

SA
Controller

IN
Controller

OB
Controller

DV
Controller

DH
Controller

Figure 6 – Manual and automatic code class diagram

The manual code is designed as a class hierarchy designed according to the operational
modes identified in the mission overview section.  The base controller class defines
functions and data that are common to all controllers.  Next, the control modes are
classified according to which actuator is used for control.  Finally, individual modes are
defined.  The base controller class is the only class that invokes achifi’s member
functions.  Achifi_Initialize() is called when the processor is initialized and whenever a
mode transition is performed.  Achifi_Execute() is called during each control cycle.
Achifi_Execute() manages calling the other functions created by AutoCode.

The object-oriented design was implemented in C by constructing virtual function pointer
tables and the design has proven to be very robust with regard to automatic code interface
modifications.  Most automatic code dependencies are encapsulated by the base controller
class, so changes to the interface have had no ripple affect.  The base class also provides
functionality that can be shared by all controllers.  Controller_MonitorPerformance()
monitors the performance of achifi by monitoring body rates, attitude errors, and body
rate errors.  Controller unique performance limits are supplied to Controller_New() when
a controller is instantiated.  Another benefit of the object-oriented design is that the class
hierarchy has resulted in small, easy to test functions.  Below are some excerpts from the
ACS FSW showing how the base controller class manages the automatic code.

Controller file scope excerpt
#include “achifi.h”                /* Autocode header file  */
achifi_Input_Rec  achifi_Input;    /* Autocode input record */



12

Controller_Init() excerpt
achifi_Init(&achifi_Input,TRUE);   /* TRUE means copy %VARs from EEPROM */

Controller_Execute() excerpt
achifi_Input.BodyEstRateX = DataMgr.Config.BodyRate.Comp[X];
achifi_Input.BodyEstRateY = DataMgr.Config.BodyRate.Comp[Y];
achifi_Input.BodyEstRateZ = DataMgr.Config.BodyRate.Comp[Z];

achifi_Input.Rwa1MeasTachSpeed = RWA_ProcData.Speeds[0];
achifi_Input.Rwa2MeasTachSpeed = RWA_ProcData.Speeds[1];
achifi_Input.Rwa3MeasTachSpeed = RWA_ProcData.Speeds[2];
. . .
achifi_Execute(&achifi_Input,DataMgr.Config.DeltaTime);

AttCtl.BodySysMom.Comp[X] = (float)achifi_Output.BodyMeasSystemMomX;
AttCtl.BodySysMom.Comp[Y] = (float)achifi_Output.BodyMeasSystemMomY;
AttCtl.BodySysMom.Comp[Z] = (float)achifi_Output.BodyMeasSystemMomZ;
AttCtl.BodySysMomMag = (float)Vector3f_Mag(&AttCtl.BodySysMom);
. . .

The automatic code is less readable than the manual code shown above, but this is mostly
due to the inclusion of SystemBuild’s numeric block identifiers in the variable names.
The automatic code generation is very systematic and once you get a feel for how status
information, state information, inputs, outputs, and initialization are managed, the code is
is relatively easy to read.  In fact, comments are inserted in the code to identify which
block is being coded.  The code’s readability is further enhanced by having each
SuperBlock output to a separate file, using data naming conventions in the HiFi, and
labeling all block I/O lines in the HiFi.

There are a few drawbacks to the automatic code, but none of them have proven to be
fatal.  The automatic code is large and less efficient than its manual equivalent.  We have
not had the luxury of duplicating the coding effort manually, but there have been a couple
of cases when a fair comparison between the manual and automatic code could be made.
In these cases the automatic code has been two to three times larger than the manual code.
This code bloat is primarily due to the fact that AutoCode does a lot of data copying
before and after calling a procedure.  Declaring procedure blocks inline can reduce this
overhead, but this doesn’t allow functions to reside in individual files.  Since MAP has a
1Hz ACS task execution rate and 4 megabytes of EEPROM, resources have not been a
concern.

There are a few non-resource issues that did create some trouble.  We wanted to treat
%VARs as one or more FSW tables.  A FSW table must contain physically contiguous
data and we typically achieve this by defining a table as a C structure.  Unfortunately the
Xmath variable partitions do not translate into C structures.  We were able to
contiguously group the %VARs by defining the %VARs in a separate file.  Using linker
scripts, the %VAR object file was defined as a contiguous data structure.

There have been two cases when the generated code wasn’t what we expected.  In both
cases, default values were hard coded for %VARs instead of variables being used.  ISI’s



13

response was that these are features of the blocks in question, although that
documentation has not been found yet.  Hard coded %VARs is unacceptable so we had to
develop workarounds.  In one case we coded the block in BlockScript and in the other
case we changed the design so the offending block wasn’t used.  Aside from the %VAR
problem, the generated code has properly implemented the HiFi design.

The last issue with the generated code concerns the time between valid control cycles,
which we refer to as delta time.  Nominally, delta time is one second, but there are
situations in which this time can be greater than one second.  The ACS FSW must use the
actual delta time to safely control the spacecraft.  However, AutoCode hard codes a one
second delta time because the top-most SuperBlock is defined as a 1Hz procedure block.
To correct the situation the automatically generated code must be manually changed to
use the delta time passed to achifi_Execute().  Since our automatic code generation
process produces a separate source file for each SuperBlock, a manual code change has to
be made only once, unless the SuperBlock changes in a future build.

Testing

Both unit testing and build testing have been improved by using MATRIXx.  Many of
these gains are the result of the entire tool set, not just AutoCode, and are also the result
of the FSW developers and analysts working more closely together than on previous
Goddard missions.

Figure 7 shows the primary unit testing effort.  The HiFi outputs simulation results,
simulation inputs, and the automatic code to the unit test platform.  The unit test (UT)
driver is linked with the FSW controller classes and the automatic code.  Five HiFi test
cases, one for each operational mode, were used as the test suite. This data was run
through the FSW and the FSW results were compared to the HiFi results.  This testing
has consistently shown that the automatic code accurately represents the Systembuild
design.

HiFi

Automatic
Code

Sim
Inputs

Data File

Data File

Autocode

Unit Test Driver

HiFi Platform Unit Test Platform

Sim
Results

Test
Results

FSW Controller Classes
Linked to

Linked to

achifi.h



14

Figure 7 – Automatic code unit test

Figure 7 identifies the primary unit testing activity, but there was additional unit testing
performed.  A separate UT was developed to perform boundary testing, full path
coverage, and to test miscellaneous items such as whether %VARs are properly
parameterized.   This additional testing is important because the analysts have not
traditionally programmed for flight and have not had to worry about issues such as
protecting against dividing by zero.  This is also our first experience with AutoCode and
we don’t have past experiences to provide a basis for confidence in the tool.  This is the
testing that found that the %VARs are not being parameterized for some of the blocks.

Several additional features of the UT process should be noted:

•  The UT calls the controller object functions in the same manner as the FSW
component that manages the controller objects.  This testing verifies that the manual
code and the automatic code are properly integrated.

•  Achifi.h is shown as a separate input into the UT because it is parsed by the UT to
identify the variable offsets within the simulation data file.  This aspect is useful
because this allows the order of the data within the simulation data file to change
without impacting the UT.  Since the simulation data file contains data used by the
analysts to verify the HiFi, this feature allows the analysts to change what data gets
captured without worrying about preserving the order of the data for the UT.

•  Since MathScripts managed and documented HiFi test cases, the FSW developers
didn’t require as much of the analyst’s time as in the past to get necessary
information. Defining common controller interfaces in both the HiFi and the FSW
and having a standardized data file format were the drivers that empowered the UT.
These activities could occur with or without automatic code generation.

The improvements made to build testing were achieved by extending the tool set.  Build
testing involves verifying the FSW’s performance in the breadboard lab.  Traditionally, a
small set of performance test cases were identified.  These test cases were executed in
both the HiFi and in the build test lab.  Two common problems with performance
verification involves setting up the same test case in both environments and comparing
the results.  Through a combination of UNIX scripts and MathScripts, an automated
process was developed to transform build test scripts and data sets into HiFi MathScripts.
The MathScripts are executed to generate HiFi performance data for the corresponding
build tests.  The ability to be able to generate these tools was also facilitated by the fact
that the HiFi design is similar to the FSW design so the HiFi can be configured in a
manner similar to how the FSW is configured via table loads and commands.  Another set
of MathScript tools were created to automate the generation of comparison plots.  The
plot generation and comparison tools use GUI-based menu systems making them easy to
use.  These tools provide a consistent and efficient means for all team members to
generate and analyze data without having to dedicate an engineer to these tasks.



15

Lessons Learned

The most dramatic change has occurred to our ACS FSW development process.  Figure 8
shows the same software development process shown in Figure 4 but in terms of
activities and products. What has changed is that many people are performing multiple
roles. The analysts have participated in every activity.  They perform time domain
analysis using the HiFi, help to write the requirements, attend code reviews held by the
developers, write build test procedures, and serve as the focal point for performance
verification.  Likewise, the developers have help to write the requirements, reviewed the
portion of the HiFi that is being translated to FSW, developed code, and supported
performance verification. We have intentionally not allowed the developers to participate
in build testing for independent verification.  The tools have brought the team closer
together but also allowed them to work more independently and efficiently.  Many
process participants have worked as system engineers with a specialty.

Analysis

Performance
Verification

Development
• Algorithms
• Unit Test 
  Data

Flight
Software

Performance
Data

Test
Results

Build
Test

Figure 8 – Software development roles

Trying to quantify these perceived benefits is not so clear cut.  We only have limited
metrics for the Rossi X-Ray Timing Experiment (RXTE), spacecraft which is a recent
Goddard ACS FSW development effort.  The following data is a simple comparison of
the RXTE and MAP ACS FSW development efforts.

Lines Of Code(LOC) Spacecraft Man Years (MY) LOC/MY
33,318 XTE 13.8 2414
17,525 MAP 6.1 2872

This data appears to show that MAP has been slightly more productive.  However, there
are many factors to consider when evaluating this data.

•  We only have metrics on how much time a developer spent on a project.  These
metrics are not refined enough to know how much time a developer spent on activities
other than development.



16

•  Conversely, the man year data doesn’t include analysts or build testers, yet one of the
empirical benefits of AutoCode is that it improves the entire development effort.  We
definitely reduced the manpower required to translate the HiFi to FSW by using
AutoCode, and on RXTE, an analyst was dedicated to creating, executing, and
plotting HiFi performance runs for build test verification.  These benefits have not
been quantified by the data above.

•  As stated before, the automatic code was two to three times larger than if it were
manually coded.  The 5,356 lines of automatic code (31% of the MAP ACS FSW)
inflate the MAP production rate.

This data is very encouraging considering that MAP incurred a learning curve with the
new tool set.  Unfortunately we don’t have any build test metrics, but the test effort has
been observably better than on RXTE and we do know the lab is vacant on weekends!

In summary, our low risk approach was successful in allowing us to investigate new
technology while meeting the demands of MAP’s ambitious schedule with a small
development team.


